Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract The Virgo Filament Survey (VFS) is a comprehensive study of galaxies that reside in the extended filamentary structures surrounding the Virgo Cluster, out to 12 virial radii. The primary goal is to characterize all of the dominant baryonic components within galaxies and to understand whether and how they are affected by the filament environment. A key constituent of VFS is a narrowband Hαimaging survey of over 600 galaxies, VFS-Hα. The Hαimages reveal detailed, resolved maps of the ionized gas and massive star formation. This imaging is particularly powerful as a probe of environmentally induced quenching because different physical processes affect the spatial distribution of star formation in different ways. In this paper, we present the first results from the VFS-Hαfor the NGC 5364 group, a low-mass ( ) system located at the western edge of the Virgo III filament. We combine Hαimaging with resolved Hiobservations from MeerKAT for eight group members. These galaxies exhibit peculiar morphologies, including strong distortions in the stars and the gas, truncated Hiand Hαdisks, H itails, extraplanar Hαemission, and off-center Hαemission. These signatures are suggestive of environmental processing such as tidal interactions, ram pressure stripping, and starvation. We quantify the role of ram pressure stripping expected in this group, and find that it can explain the cases of Hitails and truncated Hαfor all but one of the disk-dominated galaxies. Our observations indicate that multiple physical mechanisms are disrupting the baryon cycle in these group galaxies.more » « lessFree, publicly-accessible full text available May 15, 2026
- 
            ABSTRACT High-redshift ($$z\sim 1$$) galaxy clusters are the domain where environmental quenching mechanisms are expected to emerge as important factors in the evolution of the quiescent galaxy population. Uncovering these initially subtle effects requires exploring multiple dependencies of quenching across the cluster environment, and through time. We analyse the stellar mass functions (SMFs) of 17 galaxy clusters within the GOGREEN and GCLASS surveys in the range $0.8< z<1.5$, and with $$\log {(M/{\rm {M_\odot }})}>9.5$$. The data are fit simultaneously with a Bayesian model that allows the Schechter function parameters of the quiescent and star-forming populations to vary smoothly with cluster-centric radius and redshift. The model also fits the radial galaxy number density profile of each population, allowing the global quenched fraction to be parametrized as a function of redshift and cluster velocity dispersion. We find the star-forming SMF to not depend on radius or redshift. For the quiescent population however, there is $$\sim 2\sigma$$ evidence for a radial dependence. Outside the cluster core ($$R>0.3\, R_{\rm 200}$$), the quenched fraction above $$\log {(M/{\rm {M_\odot }})}=9.5$$ is $$\sim 40{\rm\,\,per\, cent}$$, and the quiescent SMF is similar in shape to the star-forming field. In contrast, the cluster core has an elevated quenched fraction ($$\sim 70{\rm \,\,per\, cent}$$), and a quiescent SMF similar in shape to the quiescent field population. We explore contributions of ‘early mass-quenching’ and mass-independent ‘environmental-quenching’ models in each of these radial regimes. The core is well described primarily by early mass-quenching, which we interpret as accelerated quenching of massive galaxies in protoclusters, possibly through merger-driven feedback mechanisms. The non-core is better described through mass-independent environmental-quenching of the infalling field population.more » « less
- 
            Abstract Recent theoretical work and targeted observational studies suggest that filaments are sites of galaxy preprocessing. The aim of the WISESize project is to directly probe galaxies over the full range of environments to quantify and characterize extrinsic galaxy quenching in the local universe. In this paper, we useGALFITto measure the IR 12μm (R12) and 3.4μm (R3.4) effective radii of 603 late-type galaxies in and surrounding the Virgo cluster. We find that Virgo cluster galaxies show smaller star-forming disks relative to their field counterparts at the 2.5σlevel, while filament galaxies show smaller star-forming disks to almost 1.5σ. Our data, therefore, show that cluster galaxies experience significant effects on their star-forming disks prior to their final quenching period. There is also tentative support for the hypothesis that galaxies are preprocessed in filamentary regions surrounding clusters. On the other hand, galaxies belonging to rich groups and poor groups do not differ significantly from those in the field. We additionally find hints of a positive correlation between stellar mass and size ratio for both rich group and filament galaxies, though the uncertainties on these data are consistent with no correlation. We compare our size measurements with the predictions from two variants of a state-of-the-art semi-analytic model (SAM), one which includes starvation and the other incorporating both starvation and ram pressure stripping (RPS). Our data appear to disfavor the SAM, which includes RPS for the rich group, filament, and cluster samples, which contributes to improved constraints for general models of galaxy quenching.more » « less
- 
            ABSTRACT We present a multiwavelength observation of a cool core that does not appear to be associated with any galaxy, in a nearby cluster, Abell 1142. Its X-ray surface brightness peak of ≲2 keV is cooler than the ambient intracluster gas of ≳3 keV, and is offset from its brightest cluster galaxy (BCG) by 80 kpc in projection, representing the largest known cool core – BCG separation. This BCG-less cool core allows us to measure the metallicity of a cluster centre with a much-reduced contribution from the interstellar medium (ISM) of the BCG. XMM–Newton observation reveals a prominent Fe abundance peak of $$1.07^{+0.16}_{-0.15}$$ Z⊙ and an α/Fe abundance ratio close to the solar ratio, fully consistent with those found at the centres of typical cool core clusters. This finding hints that BCGs play a limited role in enriching the cluster centres. However, the discussion remains open, given that the α/Fe abundance ratios of the orphan cool core and the BCG ISM are not significantly different. Abell 1142 may have experienced a major merger more than 100 Myr ago, which has dissociated its cool core from the BCG. This implies that the Fe abundance peak in cool core clusters can be resilient to cluster mergers. Our recent Institut de Radio Astronomie Millimétrique 30-m observation did not detect any CO emission at its X-ray peak and we find no evidence for massive runaway cooling in the absence of recent active galactic nucleus feedback. The lack of a galaxy may contribute to an inefficient conversion of the ionized warm gas to the cold molecular gas.more » « less
- 
            ABSTRACT We present an analysis of the galaxy stellar mass function (SMF) of 14 known protoclusters between 2.0 < z < 2.5 in the COSMOS field, down to a mass limit of 109.5 M⊙. We use existing photometric redshifts with a statistical background subtraction, and consider star-forming and quiescent galaxies identified from (NUV − r) and (r − J) colours separately. Our fiducial sample includes galaxies within 1 Mpc of the cluster centres. The shape of the protocluster SMF of star-forming galaxies is indistinguishable from that of the general field at this redshift. Quiescent galaxies, however, show a flatter SMF than in the field, with an upturn at low mass, though this is only significant at ∼2σ. There is no strong evidence for a dominant population of quiescent galaxies at any mass, with a fraction <15 per cent at 1σ confidence for galaxies with log M*/M⊙ < 10.5. We compare our results with a sample of galaxy groups at 1 < z < 1.5, and demonstrate that a significant amount of environmental quenching must take place between these epochs, increasing the relative abundance of high-mass ($$\rm M_{\ast } \gt 10^{10.5} {\rm M}_{\odot }$$) quiescent galaxies by a factor ≳ 2. However, we find that at lower masses ($$\rm M_{\ast } \lt 10^{10.5} {\rm M}_{\odot }$$), no additional environmental quenching is required.more » « less
- 
            Abstract Virgo is the nearest galaxy cluster; it is thus ideal for studies of galaxy evolution in dense environments in the local universe. It is embedded in a complex filamentary network of galaxies and groups, which represents the skeleton of the large-scale Laniakea supercluster. Here we assemble a comprehensive catalog of galaxies extending up to ∼12 virial radii in projection from Virgo to revisit the cosmic-web structure around it. This work is the foundation of a series of papers that will investigate the multiwavelength properties of galaxies in the cosmic web around Virgo. We match spectroscopically confirmed sources from several databases and surveys including HyperLeda, NASA Sloan Atlas, NASA/IPAC Extragalactic Database, and ALFALFA. The sample consists of ∼7000 galaxies. By exploiting a tomographic approach, we identify 13 filaments, spanning several megaparsecs in length. Long >17 h –1 Mpc filaments, tend to be thin (<1 h –1 Mpc in radius) and with a low-density contrast (<5), while shorter filaments show a larger scatter in their structural properties. Overall, we find that filaments are a transitioning environment between the field and cluster in terms of local densities, galaxy morphologies, and fraction of barred galaxies. Denser filaments have a higher fraction of early-type galaxies, suggesting that the morphology–density relation is already in place in the filaments, before galaxies fall into the cluster itself. We release the full catalog of galaxies around Virgo and their associated properties.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
